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Percolation and the Potts Model 

F. Y. W u  1 

Received July 13, 1977 

The Kasteleyn-Fortuin formulation of bond percolation as a lattice 
statistical model is rederived using an alternate approach. It is shown that 
the quantities of interest arising in the percolation problem, including the 
critical exponents, can be obtained from the solution of the Potts model. 
We also establish the Griffith inequality for critical exponents for the bond 
percolation problem. 
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1. INTRODUCTION 

The percolation process provides a simple picture of  a critical point transition 
and has been of increasing recent theoretical interest. We refer to several 
review articles (1-a~ for a general survey of the subject. An important  develop- 
ment first established by Kasteleyn and Fortuin (4,5~ is the connection between 
bond percolation and a lattice statistical model. This consideration leads to 
a formulation of the percolation problem which is extremely useful, for many 
of  the techniques readily available in statistical mechanics can now be applied 
to percolation (see, e.g., Ref. 6). However, much of this otherwise elegant 
result appears to be masked under the formality of  the graph-theoretic 
approach of Kasteleyn and Fortuin, and we feel it worthwhile to have an 
alternate derivation to elucidate the situation. We present an approach to the 
Kasteleyn-Fortuin formulation of bond percolation which we believe to be 
simpler and more direct; it also permits a straightforward extension of the 
Griffiths inequality to the percolation problem. In Section 2 we review the 
bond percolation problem for the purpose of establishing the notation. The 
Potts model is introduced in Section 3, and we show that the quantities of  
interest arising in the percolation problem, including the critical exponents, 
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can be obtained from the solution of the Potts model. Expressions showing 
these relationships are explicitly given. The Griffiths exponent inequality for 
the percolation process is established in Section 4. 

2. B O N D  P E R C O L A T I O N  

Consider a lattice (or graph) G composed of N sites (vertices) and M 
edges (lines). The graph does not have to be regular, although consideration 
in practice is always confined to regular lattices and for M and N large, with 
the ratio 

z = lim M / N  (1) 
M , N --* oo 

finite. An example is z = 2 for the square lattice. 
In a bond percolation process, there is a probability p for each edge of G 

to be "occupied" independently and a probability 1 - p for it to be "vacant ."  
It is convenient to picture the occupied edges as covered by bonds placed 
along the edges. Two sites that are connected by a chain of occupied edges, 
or bonds, are said to belong to the same cluster. Then, one of the first 
questions that can be raised about this percolation process is the probability 
that a randomly chosen site, say, the origin, of an infinite lattice belongs to a 
cluster of infinite size. This is the percolation probability P(p) .  

It is clear that P(0) = 0 and P(1) = 1. The interesting property of P(p)  
is that it remains zero for p less than a certain critical value Pc, and rises 
sharply at Pc with the behavior (3) 

P(P)  ~ (P - Pc) ~, P ~- Pc+ (2) 

for some positive ft. This defines the critical exponent/3 for the percolation 
process. 

To formulate the problem mathematically, observe that each bond 
configuration of G is conveniently represented by a subgraph G' of G whose 
edge set contains precisely the occupied edges. Let A - A ( G ' )  be a number 
associated with some property of the subgraph G'. Examples are 

e =- e(G') = number of occupied edges in G' 
(3) 

n =- n(G') = number of clusters in G' 

The probability for the configuration G' to occur is 

~r(G') = pC(1 - p)M-e (4) 

The average of  the quantity A is then defined to be 

<A> = ~ ~(6')A(c') (5) 
(7" 
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As in statistical mechanics, the average quantities of interest are usually 
extensive, and we shall need the " thermodynamic"  limit 

(A)0 = lim N-I(A) (6) 
N ~ c O  

Generally let Ac - Ac(G') denote some property of a cluster c in G', and 
Ao =- Ao(G') the property of the cluster containing the origin. Examples are 
sc and So, the number of sites in a cluster, and bc and bo, the number of bonds 
in a cluster. Then, by translational symmetry, we have the identity (7~ 

The factor sc in (7) arises because there are precisely sc ways for the origin 
to lie within a cluster of sc sites. If  we define 

~'o = 1, if So is finite 

= 0, otherwise 

It then follows from our definitions that 

P ( p ) - l - ( ~ , 0 ) =  1 _ ( ~ r & )  (8) 

where the prime restricts the summation to finite clusters. 
Other quantities of interest include S(p), the mean size of the finite 

cluster that contains the origin. In our notation, 

S(p)=- (So,o) = ( ~ ' s c  2 )  (9) 

Here, we have adopted the convention of specifying the cluster size by its site 
content. Alternately, as is customary in bond percolation considerations, we 
may also specify the cluster size by its bond content. The mean cluster size 
is then taken to be 

S(B)(p) = (zp)- l ( ~ '  bc2 ~ (10) 

It can be shown (8~ that (9) and (10) give rise to the same exponents 7 and ~,'" 

S ( p )  ~ (p  - po)-~, p ~- p c -  
(11)  

~ (pc  - p ) - " ,  p ~- pc  + 

Here the primed exponent refers to p ~ Pc + ,  which is analogous to T _ T c -  
of the ordinary critical point. 

Another quantity of interest is the mean number of clusters per site 

a(p) = (n)0 (12) 
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Since infinite clusters, whenever they appear, are limited in numbers, there is 
presumably no need to distinguish G(p) and G(V~(p), the mean number of 
finite clusters. This is certainly so for p ~< Pc. In evaluating (12), the isolated 
sites are considered as individual clusters. The behavior of the singular part 
of G(p) now defines the critical exponents ~ and c~': 

G ~ ( p )  ~ lP - Pc[ 2-~ '2- ' ,  P - Pc (t3) 

Finally, the pair connectivity c(r, p) is defined to be the probability that 
the sites at the origin and at r are connected (i.e., they belong to the same 
cluster). This connectivity can be written as 

c(r, p) = (7(r)) (14) 

where 

7(r) = 1, if the sites at the origin and r are connected 

= 0, otherwise 

The decay of the connectivity at p~ defines the exponent ~7 for the percolation 
process: 

e(r,p~) ~ r -(a-2+n~, r-->oo (15) 

Here d is the dimensionality of  the lattice. 
It is also customary to consider e(F~(r, p), the probability that the sites at 

the origin and at r belong to the samefinite cluster. (7~ We expect c(r, p) and 
e(~)(r, p) to be identical for p ~< Pc. 

The Fourier transform of the pair connectivity takes the form 

E(k, p ) -  ~c(r,~ p ) e x p ( - i k . r )  = - - , ~ o  ( ~  e x p ( - i k . r ) )  (16) 

where the summation in (16) extends over all sites in the cluster Co containing 
the origin. By expanding the exponential and averaging over all directions of 
k, one obtains the moment expansion ~9~ 

where 

( -  12k2~ 
g~v(k, p) = f='--o (2n + 1) [/~2~(P) (17) 

There is strong evidence that /~(p)  diverges as (9~ 

/z=(p) ~ ]Pc - P]-~-=~', p ~ p ~ -  (19) 

which defines the critical exponents v. The exponent v' can be defined 
similarly from the critical behavior of the corresponding/s at Pc + .  The 
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definitions of the exponents 8, A, and A' for the percolation process will be 
given in the next section. 

3. T H E  P O T T S  M O D E L  

The Potts model ~1~ is a generalization of the Ising model so that the 
spins can be in one of q states (q = 2 is the Ising model). Let the spin state 
at the ith site be specified by ~, = 1, 2 . . . . .  q. The Hamiltonian for the Potts 
model in an external field - H  is 

= - / 4  ( 2 0 )  
<i j> 

where the first summation extends over the M edges of G, and the external 
field - H  is applied to the spin state ~. The partition function of the Potts 
model now reads 

q 

Z ( q ;  k , L )  = ~ ~ [1 + v3k~(e,, ~:J)]~I [1 + uSk,(~,, ~)J (21) 
~i=l <i]> i 

where 

v = e rr - 1, u = e L - 1, K = e/kT,  L = H / k T  (22) 

Following Baxter (11> and Ref. 5, we expand the first product in (21) and 
use the subgraphs of G to represent the terms in the expansion. Each term in 
the expansion is conveniently represented by a subgraph G' whose edge set 
coincides with the v3kr(~, ~:j) factors contained in the term. For a given G' 
of the expansion, we further expand the second product in (21) for each 

cluster. For the first term, viz. 1, in the expansion for a cluster, the summa- 
tions in (21) yield a factor q. For the remaining 2so - 1 terms of the cluster, 
which contains sc sites, the summations yield a factor (1 + u)~c- 1 = 

eL~o - 1. It follows that (21) takes the form 

Z ( q ;  K , L )  = ~ v e ~ I  (eZSc + q - 1) (23) 
G" C 

Comparing (23) with (5), we see that we can write 

Z ( q ;  K , L )  = e ~ X ( U  (eL~c + q - 1 ) )  (24) 

provided that, of course, we take v = p/(1 - p) ,  or 

p =  1 -  e -to (25) 

Equation (24) is the basic relation connecting the Potts model with the 
bond percolation problem. Note that while the Potts partition function (21) 
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is defined strictly for positive, integral q, the expression (23) or (24) provides 
a natural continuation of the partition function to other values of q. This 
leads to the random cluster model of Refs. 4 and 5. For our purposes, it 
suffices to start from the solution of the Potts model and simply treat the 
parameter q occurring in the solution as a continuous variable. This permits 
us to carry out operations such as derivatives with respect to q. Now write 
the free energy per site of the Potts model as 

and further define 

f(q; K,L) = lira N -1 lnZ(q;  K,L) (26) 
N--* oo 

h(K,L) = [~f(q; K,L)]~= 1 (27) 

It is easy to verify that, after an interchange of the order of the derivative 
and the thermodynamic limit, 

h(K ,L )=<~e-LSo~  = < ~ '  e - S S o ~ ,  L > O  (28) 

While for L -- 0 the summation in (28) ranges over all clusters, the summa- 
tion is, in effect, restricted to clusters of finite size for any L > O. We then 
obtain from (12) and (28) the identities 

G(p) = h(K, 0), G'F'(p) = h(K, 0 +) (29) 

Therefore, G(p) = G(F~(p) if and only if h(K, L) is continuous at L = 0. 
Further define 

P(p, r) - 1 + (a/aL)h(g, L) (30) 

Comparison of (8) and (28) then establishes the identity 

P(p) = P(p,  0 + )  (31) 

Similarly, (9) leads to the expression 

32 
S(p) -- [-~-~ h(K,L)]L=o+ (32) 

It is now seen that h(K, L) plays the role of the free energy of a statistical 
model and we are led to the correspondences (~'5~ 

G(p) +-+ free energy 

P(p)  ~ magnetization 

S(p) ~ susceptibility 
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Pursuing the analogy further, it is now possible to define the exponent 3 for 
the percolation process from the relation ~12) 

P(Pc, L) ~ L ~/~, L = 0 (33) 

Similarly, we can define the gap exponents A and A' using 

h(K, L) L=o+ ~ [p - Pc[-r-a,-r-A" (34) 

The above analysis can be extended if an external field of the form 

-n~ ~ *~,(~,, ~,) ~r(f:, ~) 
(iD 

is included in the Potts Hamiltonian (20). This changes (24) into 

Z(q; K,L,L~) = e M K ( ~  (eL~+L~bo + q - 1 ) ~  (35) 

where L~ = Hz/kT. Quantities involving the averages of be, such as S<B)(p) 
in (10), can be conveniently expressed as the derivatives of the free energy 
per site defined by (35). In fact, the analogy between the Potts model and the 
bond percolation may be developed by considering L1 instead of L as the 
external field. Since this does not lead to any new values for the critical 
exponents, ~8~ we shall not consider it any further. 

Finally, we consider the pair connectivity c(r,p). Let P,~(r) be the 
probability in the zero-field Potts model that the sites at the origin and r are 
both in the spin state ~. Since P,~(r) = q - 2  when there is no correlation, the 
correlation function can be defined to be (z3~ 

Now 

F~(r)  = P~(r)  - q-2 (36) 

P~(r)  = ~ ' I ~  [1 + v3kr(~:,, ~:)]/Z(q; K, 0) (37) 

where the prime over the summation denotes that the spins at the origin and 
at r are held at state a. Again, we use a graphical representation of terms in 
the expansion of the numerator in (37). However, it is now necessary to 
distinguish whether the sites at the origin and at r are connected. We thus 
obtain 

P~(r)  = q-1 (~(r)q ~) q-2 ([1 - y(r)]q ~) (q~-----S- + (38) 

It follows then that 

q2(q _ 1)- 1F~(F) = (~,(r)q~)/(q n) (39) 
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or, using (14), 

Similarly, we expect 

c(r, p) = [ ~  F~(r)]a=l (4o) 

c(F~(r'P) = [~q p~(r '  0+ ) ]  q=l (41) 

where P~(r, L) is an extension of (36) using the Hamiltonian (20). However, 
the proof of (41) requires an identity for the Potts model similar to that of the 
equivalence of the large-distance, two-spin correlation and the square of 
the spontaneous magnetization of the Ising model. This identity has not been 
rigorously established. 

The relations (40) suggests the further analogy (4's~ 

e(r, p) +-~ correlation function 

The exponents ~7, v, and v' for the percolation may then be extracted 
from the Potts correlation function. 

4. GRIFF ITHS E X P O N E N T  I N E Q U A L I T Y  

Kasteleyn and Fortuin(4,5~ have established the Rushbrooke inequality ~14) 

~' + 2/3 + y' /> 2 (42) 

for the bond percolation. We now show that our formulation of the percola- 
tion permits a straightforward derivation of the Griffiths inequality (15~ 

~' +/3(1 + 8) /> 2 (43) 

for the critical exponents for the bond percolation. 
We observe from (28) that g(K, L) =- L + h(K, L) is convex in L. This 

implies that the Legendre transformation 

a(p, P) - g[K, L(K, P)] - L(K, P)P (44) 

of g(K, L) is concave in P, where p = 1 - e -K and L(K, P) is to be derived 
from (30). Further, from the existence of P(p)= P(p,L = 0+)  and the 
relation L = aA/OP we know that A(p, P) is a constant for p > Pc and 
P <~ P(p). These are the basic ingredients needed in the derivation of the 
Griffiths inequality for a thermodynamic system. Following the standard 
argument, (.6~ we are thus led to the Griffiths inequality (43) for the percolation 
problem. The appearance of ~' in the equality is spurious wherever ~' < 0, 
which is the case for some percolation problems in two dimensions. (~v~ For 
such systems, the Griffiths equality should read 

/3(1 + 8) > 2 (~' <~ 0) (45) 



Percolation and the Potts Model 123 

NOTE A D D E D  IN PROOF 

It has been recently established that  the site percolat ion can be formu- 

lated as a Ports model  with many-body  interactions (H. K u n z  and  F. Y. Wu,  

to be published in J. Phys. C). 
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